Title

Inhibition of IRF5 hyper-activation protects from lupus onset and severity.

Publication Date

2020

Journal Title

J Clin Invest

Abstract

The transcription factor interferon regulatory factor 5 (IRF5) is a central mediator of innate and adaptive immunity. Genetic variations within IRF5 associate with risk of systemic lupus erythematosus (SLE) and mice lacking Irf5 are protected from lupus onset and severity, but how IRF5 functions in the context of SLE disease progression remains unclear. Using the NZB/W F1 model of murine lupus, we show that murine Irf5 becomes hyper-activated before clinical onset. In SLE patients, IRF5 hyper-activation correlated with dsDNA titers. To test whether IRF5 hyper-activation is a targetable function, we developed novel inhibitors that are cell permeable, non-toxic and selectively bind to the inactive IRF5 monomer. Preclinical treatment of NZB/W F1 mice with inhibitor attenuated lupus pathology by reducing serum ANA, dsDNA titers and the number of circulating plasma cells, which alleviated kidney pathology and improved survival. Clinical treatment of MRL/lpr and pristane-induced mice with inhibitor led to significant reductions in dsDNA levels and improved survival. In ex vivo human studies, the inhibitor blocked SLE serum-induced IRF5 activation in healthy immune cells and reversed basal IRF5 hyper-activation in SLE immune cells. Altogether, this study provides the first in vivo clinical support for treating SLE patients with an IRF5 inhibitor.

Volume Number

130

Issue Number

12

Pages

6700-6717

Document Type

Article

Status

Faculty; Northwell Researcher

Facility

School of Medicine; Northwell Health

Primary Department

Molecular Medicine

Additional Departments

General Internal Medicine; General Pediatrics

PMID

32897883

DOI

10.1172/jci120288

For the public and Northwell Health campuses

Share

COinS