Correction to: Exploring the biological functional mechanism of the HMGB1/TLR4/MD-2 complex by surface plasmon resonance.

M. He
Northwell Health

M. E. Bianchi

T. R. Coleman
Northwell Health

K. J. Tracey
Zucker School of Medicine at Hofstra/Northwell

Y. Al-Abed
Zucker School of Medicine at Hofstra/Northwell

Follow this and additional works at: https://academicworks.medicine.hofstra.edu/articles

Part of the Medical Molecular Biology Commons

Recommended Citation

This Article is brought to you for free and open access by Donald and Barbara Zucker School of Medicine Academic Works. It has been accepted for inclusion in Journal Articles by an authorized administrator of Donald and Barbara Zucker School of Medicine Academic Works. For more information, please contact academicworks@hofstra.edu.
Correction to: Exploring the biological functional mechanism of the HMGB1/TLR4/MD-2 complex by surface plasmon resonance

Mingzhu He1*, Marco E. Bianchi2, Tom R. Coleman1, Kevin J. Tracey3 and Yousef Al-Abed1*

Correction
After publication of this article (He et al., 2018), the corresponding authors recognised an error in Scheme 1, in particular to section “A. HMGB1/TLR4/MD-2 complex formation”. Above “Step 2: B box binding to MD-2”, the text incorrectly read: “Low affinity / extremely slow off”. In addition, some text was omitted below “TLR4/MD-2”. The correct version of Scheme 1 is included in this Correction article. The original article (He et al., 2018) has been corrected.

Author details
1Center for Molecular Innovation, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA. 2Division of Genetics and Cell Biology, Chromatin Dynamics Unit, San Raffaele University and San Raffaele Scientific Institute IRCCS, Via Olgettina 58, 20132 Milan, Italy. 3Center for Biomedical Science, and Center for Bioelectronic Medicine, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA.

Received: 23 May 2018 Accepted: 23 May 2018
Published online: 13 June 2018

Reference

* Correspondence: mhe@northwell.edu; yalabed@northwell.edu
1Center for Molecular Innovation, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA
Full list of author information is available at the end of the article

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Low affinity / extremely slow off rate

Step 2: B box binding to MD-2

High affinity / slow off rate

Step 1: A-box binding to TLR4

HMGB1

TLR4/MD-2

signaling

Forming more stable complex with TLR4

A-box

How A-box antagonizes HMGB1?

MD-2

TLR4

Blocking A-box via epitope residues

How 2G7 inhibits HMGB1?

Interactions of HMGB1/TLR4 are inhibited

HMGB1/TLR4/MD-2 complex formation

Scheme 1 Proposed mechanism of HMGB1-TLR4 interaction and role of anti-HMGB1 antibody (2G7)