Arterial thromboembolic complications in COVID-19 in low-risk patients despite prophylaxis

D. O. Griffin

A. Jensen
Northwell Health, ajensen2@northwell.edu

M. Khan
Northwell Health, mkhan27@northwell.edu

J. Chin
Northwell Health, jchin5@northwell.edu

K. Chin
Northwell Health, kchin3@northwell.edu

See next page for additional authors

Follow this and additional works at: https://academicworks.medicine.hofstra.edu/articles

Part of the Internal Medicine Commons

Recommended Citation

This Article is brought to you for free and open access by Donald and Barbara Zucker School of Medicine Academic Works. It has been accepted for inclusion in Journal Articles by an authorized administrator of Donald and Barbara Zucker School of Medicine Academic Works. For more information, please contact academicworks@hofstra.edu.
Authors
D. O. Griffin, A. Jensen, M. Khan, J. Chin, K. Chin, R. Parnell, C. Awwad, and D. Patel
Arterial thromboembolic complications in COVID-19 in low-risk patients despite prophylaxis

We present a case series of three patients with coronavirus disease 2019 (COVID-19) who developed arterial vascular complications, one who developed an acute cerebrovascular accident, one who developed popliteal artery occlusion and one who developed both during their hospital course.

We present a case series of three patients admitted to Northwell Plainview Hospital in Plainview, New York with COVID-19 as confirmed by polymerase chain reaction. The clinical disease course of COVID-19 has been well documented in China and Europe and most recently, the USA. Publications highlighting the non-respiratory complications of COVID-19 have been limited.1,2 Acute cardiac injury and arrhythmia in the intensive care unit (ICU) have been described as major complications of COVID-19.3 A few publications have highlighted the incidence of venous thromboembolic complications in COVID-19.4,5 We present three patients who were found to have arterial thrombosis as a complication of COVID-19. All three patients were admitted to Northwell Plainview Hospital during March or April of 2020 and were on prophylactic or full-dose anti-coagulation at the time of these events. The patients all received intravenous (IV) steroid [methylprednisolone (Solu-Medrol) 1–2 mg/kg per day × 5–8 days] and tocilizumab (400 mg IV × 1) during what was assumed to be the cytokine storm phase of the clinical course (Table I).6

Table I. Patients with arterial thromboembolic complications.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Patient 1</th>
<th>Patient 2</th>
<th>Patient 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years</td>
<td>50</td>
<td>65</td>
<td>69</td>
</tr>
<tr>
<td>BMI, kg/m²</td>
<td>32.5</td>
<td>26.6</td>
<td>24.1</td>
</tr>
<tr>
<td>eGFR, ml/min/1.73 m²</td>
<td>58</td>
<td>83</td>
<td>47</td>
</tr>
<tr>
<td>Day of symptoms, admission, event</td>
<td>14, 25</td>
<td>8, 21</td>
<td>10, 23</td>
</tr>
<tr>
<td>D-dimer, ng/ml, baseline, event</td>
<td>249, 1334</td>
<td><150, 41693</td>
<td>329, 2620</td>
</tr>
<tr>
<td>Increase from baseline D-dimer</td>
<td>53-6×</td>
<td>277×</td>
<td>7-96×</td>
</tr>
<tr>
<td>PT, s, baseline, event</td>
<td>15-9, 17-1</td>
<td>14-5, 16-4</td>
<td>13-1, 13-4</td>
</tr>
<tr>
<td>INR, baseline, event</td>
<td>1-4, 1-51</td>
<td>1-28, 1-45</td>
<td>1-16, 1-19</td>
</tr>
<tr>
<td>Platelets, × 10^9/l, baseline, event</td>
<td>375, 808</td>
<td>219, 108</td>
<td>150, 337</td>
</tr>
<tr>
<td>Oxygen requirement at time of event</td>
<td>Intubated</td>
<td>Intubated</td>
<td>98% room air</td>
</tr>
<tr>
<td>DVT prophylaxis at event</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Tocilizumab</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Steroids</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Plaquenil</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>tPA</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

BMI, body mass index; DVT, deep vein thrombosis; eGFR, estimated glomerular filtration rate; INR, international normalised ratio; PT, prothrombin time; PTT, partial thromboplastin time; tPA, tissue plasminogen activator.

© 2020 The Authors. British Journal of Haematology published by British Society for Haematology and John Wiley & Sons Ltd

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

Patient 1 is a 50-year-old male with past medical history (PMH) of hypertension and hyperlipidaemia. The patient presented with dyspnoea on day 14 of symptoms. His deep vein thrombosis (DVT) prophylaxis was increased to enoxaparin 40 mg subcutaneously twice a day. On day 23 of symptoms, the patient was noted to have left upper extremity weakness, code ‘stroke’ was called. Serial computed tomography (CT) showed a non-haemorrhagic right parietal infarct and the patient was given tissue plasminogen activator (tPA). The patient’s neurological deficits resolved after tPA, but then he had an acute mental status change and was intubated to protect his airway. The patient was started on a full dose of enoxaparin for new onset rapid atrial fibrillation. On day 25 of symptoms, the patient developed a cool left lower extremity. Arterial Doppler showed no flow distal to the popliteal artery while on enoxaparin 1 mg/kg twice a day. He was transferred for surgical intervention, but did not undergo any surgical intervention and ultimately died.

Patient 2 is a 65-year-old male with PMH of dilated aortic root. The patient presented to the Emergency Department with progressively worsening dyspnoea on day 8 of symptoms. On symptom day 17, the patient had an acute increase in D-dimer to 12597, was started on argatroban drip, transferred to the ICU and started on Hi-flow nasal cannula. On symptom day 19, right arterial Doppler showed no
significant flow in the right popliteal artery, posterior tibial, anterior tibial, peroneal or dorsalis pedis arteries. Vascular surgery performed fasciotomy with thromboembolectomy of the right lower extremity. On symptom day 20, the patient was started on a heparin drip after failing argatroban drip post-thromboembolectomy. On symptom day 21, the patient went for a second emergent thromboembolectomy, went into ventricular tachycardic arrest intraoperatively, but achieved return of spontaneous circulation, and was found to have a massive pulmonary embolism with right ventricular strain by transthoracic echocardiogram and was treated with tPA.

Patient 3 is a 69-year-old male with PMH of coronary artery disease, insulin-dependent type 2 diabetes mellitus, hypertension and chronic kidney disease Stage III. The patient presented with dyspnoea, non-productive cough, fatigue, chills, headache, profuse watery diarrhoea and intermittent fever on day 10 of symptoms. On day 11 of symptoms, the patient was intubated for acute hypoxic respiratory failure. The patient remained intubated for 7 days. On day 23 of symptoms, the patient had a syncopal event for which a CT head showed an ill-defined low-density focus within the left thalamus, suspicious for acute infarct. Magnetic resonance imaging showed a hyper-intense signal within the left thalamus, with a small amount of associated enhancement, interpreted as likely a subacute infarct. The patient was discharged on aspirin, clopidogrel and statin therapy. The patient initially did well, but 1 day after finishing a taper of steroids he was readmitted with laryngeal oedema. He did well after additional steroids were given.

Discussion
The mechanism for coagulopathy in patients with COVID-19 is currently unknown. The thromboembolic events described in these cases occurred after the cytokine storm and during the third week of the disease, despite having no risk factors for thromboembolism and being on intermediate prophylaxis dose. The arterial clots removed at surgery in the patient described in case two were white and consistent with being platelet-rich. It is unclear and perhaps unlikely that the same mechanisms are involved in venous as in arterial clots, but this gross appearance suggested an important role of platelets and the possibility that anti-platelet agents, such as aspirin, may play a role in preventing arterial thromboembolic complications. In terms of preventing and treating venous thromboembolic disease there remains limited evidence or guidance from well-controlled trials on whether low-molecular-weight heparin, unfractionated heparin, direct factor Xa inhibitors, direct thrombin inhibition or other approaches are optimal.

References