A Pediatric Infectious Disease Perspective of SARS-CoV-2 and COVID-19 in Children.

A. L. Shane
A. I. Sato
C. Kao
F. C. Adler-Shohet
S. B. Vora

See next page for additional authors

Follow this and additional works at: https://academicworks.medicine.hofstra.edu/articles

Part of the Pediatrics Commons

Recommended Citation

This Article is brought to you for free and open access by Donald and Barbara Zucker School of Medicine Academic Works. It has been accepted for inclusion in Journal Articles by an authorized administrator of Donald and Barbara Zucker School of Medicine Academic Works. For more information, please contact academicworks@hofstra.edu.
Authors
A Pediatric Infectious Disease Perspective of SARS-CoV-2 and COVID-19 in Children

Andi L. Shane
Division of Pediatric Infectious Disease, Department of Pediatrics
Emory University School of Medicine
Children’s Healthcare of Atlanta
Atlanta, Georgia
United States of America

Alice I. Sato
Division of Pediatric Infectious Diseases
University of Nebraska Medical Center
Children's Hospital & Medical Center
Omaha, Nebraska
United States of America

Carol Kao
Division of Pediatric Infectious Disease, Department of Pediatrics
Emory University School of Medicine
Children’s Healthcare of Atlanta
Atlanta, Georgia
United States of America

Felice C. Adler-Shohet
Division of Pediatric Infectious Diseases, Department of Pediatrics
Children’s Hospital of Orange County
Orange, California
United States of America

Surabhi B. Vora
Department of Pediatrics
University of Washington and Seattle Children’s Hospital
Seattle, Washington
United States of America

Jeffery J. Auletta
Divisions of Pediatric Hematology/Oncology/BMT and Infectious Diseases, Department of Pediatrics
Nationwide Children’s Hospital
Columbus, Ohio
United States of America

Sharon Nachman
Department of Pediatrics
Stony Brook Children's
Stony Brook, NY
United States of America

Vanessa N. Raabe
Division of Infectious Disease
Departments of Medicine and Pediatrics
NYU Langone Grossman School of Medicine

© The Author(s) 2020. Published by Oxford University Press on behalf of The Journal of the Pediatric Infectious Diseases Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
New York, New York
United States of America

Kengo Inagaki
Division of Pediatric Infectious Diseases, Department of Pediatrics
University of Mississippi Medical Center
Jackson, Mississippi
United States of America

Ibukunoluwa C. Akinboyo
Division of Pediatric Infectious Diseases
Department of Pediatrics
Duke University School of Medicine
Durham, North Carolina
United States of America

Charles Woods
Department of Pediatrics
University of Tennessee College of Medicine Chattanooga.
Chattanooga, Tennessee
United States of America

Abdulsalam O. Alsulami
Division of Pediatric Infectious Disease, Department of Pediatrics
University of Alabama at Birmingham
Birmingham, Alabama
United States of America

Mundeep K. Kainth
Division of Pediatric Infectious Diseases, Department of Pediatrics
Cohen Children’s Medical Center, Northwell Health
New Hyde Park, New York
United States of America

Roberto Parul an Santos
Division of Pediatric Infectious Diseases, Department of Pediatrics
University of Mississippi Medical Center
University Hospital
Jackson, Mississippi
United States of America

Claudia M. Espinosa
Division of Pediatric Infectious Disease
University of South Florida
Morsani College of Medicine
Tampa, Florida
United States of America

Julianne E. Burns
Division of Hospital Medicine
Children’s Hospital of Philadelphia
University of Pennsylvania
Philadelphia, Pennsylvania
United States of America

Coleen K. Cunningham
Division of Pediatric Infectious Diseases, Department of Pediatrics
Duke University School of Medicine
Durham, North Carolina
United States of America

Samuel R. Dominguez
Section of Infectious Diseases
Department of Pediatrics
University of Colorado and Children’s Hospital Colorado
Aurora, Colorado
United States of America

Beatriz Larru Martinez
Division of Paediatric Infectious Diseases & Immunology
Alder Hey Children’s Hospital
Liverpool
United Kingdom

Frank Zhu
Division of Pediatric Infectious Diseases
Department of Pediatrics
Medical College of Wisconsin
Milwaukee, Wisconsin
United States of America

Jonathan Crews
Division of Pediatric Infectious Diseases
Baylor College of Medicine
The Children’s Hospital of San Antonio
San Antonio, Texas
United States of America

Taito Kitano
Division of Infectious Diseases, Department of Pediatrics,
The Hospital for Sick Children, University of Toronto,
Toronto, Ontario, Canada

Lisa Saiman
Division of Pediatric Infectious Diseases, Department of Pediatrics
Columbia University Medical Center
New York-Presbyterian Morgan Stanley Children’s Hospital
New York, New York
United States of America

Karen Kotloff
Division of Pediatric Infectious Diseases and Tropical Medicine, Department of Pediatrics
University of Maryland School of Medicine
Baltimore, Maryland
United States of America
Key words: children, pediatrics, COVID-19, SARS-CoV-2, novel coronavirus

Contact information:

Corresponding Author:
Andi L. Shane, MD, MPH, MSc
2015 Uppergate Drive NE,
Atlanta, Georgia 30322, USA
Telephone (Direct) +1.404.727.9880; Telephone (Main) +1.404.727.5642
Telephone (Clinical) +1.404.785.5437
Fax (Office) +1.404.727.9880; Fax (Clinical) +1.404.785.9111
email: ashane@emory.edu

Alternate Corresponding Author:
Karen L. Kotloff, MD
Center for Vaccine Development & Global Health
University of Maryland School of Medicine
685 W. Baltimore Street, HSF 480
Baltimore, MD 21201
Cell: 443-642-0347
Email: Kkotloff@som.umaryland.edu

Summary: We review the current knowledge of the epidemiology, clinical presentation, diagnostics, management, infection prevention, and preparedness for children with SARS-CoV-2 infections, listing resources, outlining research opportunities, and advocating for the unique needs of children in COVID-19 pandemic response.
ABSTRACT

Understanding the role that children play in the clinical burden and propagation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) responsible for novel coronavirus (COVID-19) infections is emerging. While the severe manifestations and acute clinical burden of COVID-19 has largely spared children compared to adults, understanding the epidemiology, clinical presentation, diagnostics, management, and prevention opportunities as well as the social and behavioral impacts on child health is vital. Foremost is clarifying the contribution of asymptomatic and mild infections to transmission within the household and community and the clinical and epidemiologic significance of uncommon severe post-infectious complications. Herein we summarize the current knowledge, identify useful resources, and outline research opportunities. Pediatric infectious disease clinicians have a unique opportunity to advocate for the inclusion of children in epidemiological, clinical, treatment and prevention studies to optimize their care, as well as to represent children in the development of guidance and policy during pandemic response.
EPIDEMIOLOGY

In December 2019, Coronavirus Disease 2019 (COVID-19) emerged in Wuhan, China, and the etiology was identified as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). By the end of January 2020, the World Health Organization (WHO) declared COVID-19 a public health emergency of international concern, and by mid-March 2020, the outbreak was declared a pandemic. Initially, children comprised between 1 to 2% of the laboratory confirmed SARS-CoV-2 detections among people in China [1], Italy [2], and the United States [3]. Initial reports from the Centers for Disease Control and Prevention (CDC) noted that the following age distributions: 15-17 years (32%), 10-14 years (27%), 5-9 years (15%), 1-4 years (11%), and <1 year (15%), with a median age of 11 years [3]. Subsequent assessments, as access to diagnostic testing increased, demonstrated that children, defined in this cohort as birth to 19 years of age, comprised 5.2% of the laboratory confirmed test results submitted to the from 22 January – 30 May 2020 [4]. Among this subsequent surveillance effort, specimens from children from birth through 9 years of age comprised 1.5% of the total positive results while those from 10 through 19 years of age comprised 3.7% of the total 5.2%. Internationally, most children who met either a laboratory or clinical definition for detecting SARS-CoV-2 or having a COVID-19 have been school-aged and adolescents. The low proportion of confirmed infections in infants and younger children probably results from the propensity of infants and young children to have mild symptoms and thus remain undetected [5]. A retrospective cohort study of contacts of patients with COVID-19 in Shenzhen, China found similar infection attack rates across pediatric age groups. Among children 0-9 years, the secondary attack rate was 7.4% (95% confidence interval (CI) 4.2-12.8) and among those 10-17 years of age, the secondary attack rate was 7.1% (95% CI 3.3-14.6) [6]. In a household transmission study in Guangzhou, China, researchers reported that the risk of household infection was lower in the youngest age group (<20 years; odds ratio [OR] 0.23 [95% CI 0.11-0.46]) compared with household contacts over 60 years of age [7]. Challenges with interpretation of epidemiological studies in
children include the variation among upper limit age parameters for classification as a child, varying clinical and laboratory parameters for classifying as a related infection, and a lack of representative samples from both symptomatic and asymptomatic children. These factors likely impact differences in the descriptive epidemiology of children with COVID-19.

Estimates of R_0 have varied across studies. Like factors impacting epidemiological classification, the setting, degree of crowding, adherence to controls measures, and extent of diagnostic testing affect R_0 estimates. Data from China early in the epidemic suggesting a median R_0 of 2-3 are widely accepted [8]; however, recent modeling suggests that the R_0 value may be much higher at 5.7 (95% CI 3.8–8.9) [9].

The incubation period of SARS-CoV-2 is estimated to be 5.2 days (95% CI 4.1 to 7.0 days), with a range of 2-14 days [10] [11]. Failure to account for transmission from mildly symptomatic individuals makes defining the incubation period in children more challenging. Transmission is primarily through respiratory droplets or close contact [12]. The contribution of transmission via aerosolized particles remains controversial. Transmission from pre-symptomatic (within 48-72 hours before signs and symptoms appear) [13, 14] and asymptotically [15] infected children have been suggested [16]. This has also been observed with influenza [17], and other respiratory viral infections, when asymptomatic or sub-clinically infected children elude case detection. Case series suggest that the majority (80-84%) of infected children have a symptomatic adult household or other direct epidemiologic close contact [18].

There are reasons to suspect that children may represent an important reservoir of infection within the community, especially those with higher viral loads who escape recognition because they manifest less severe disease [19] [20]. Although symptomatic children have demonstrated higher viral loads from nasopharyngeal specimens than asymptomatic children [21] an understanding of how viral load corresponds with transmission is evolving. Detectable SARS-CoV-2 from the nasopharynx for up to 22 days following symptom onset.
and for up to 30 days following symptom onset from pediatric fecal samples demonstrates the challenge of interpreting the significance of prolonged and variable shedding from different anatomical sites [18, 22] [23]. The association seen in adults of a greater severity of disease with higher viral loads and longer shedding of SARS-CoV-2 may not hold in children [24]. Moreover, polymerase chain reaction (PCR) detection of viral RNA may not represent infectious virus particles. The ongoing accumulation of information related to serological correlates of protection following both symptomatic and asymptomatic infections will add to our understanding of transmissibility in recovered children [25].

UNDERLYING CONDITIONS AND CLINICAL FEATURES

Underlying health conditions are common in hospitalized children with acute COVID-19, including chronic respiratory insufficiency, obesity, and neurodevelopmental conditions [4] [26] [27] [28]. It is unclear whether the increased hospitalization rate among children with underlying medical conditions is due to a lower threshold for hospitalization, concern for complications, or more severe manifestations of a SARS CoV-2 infection.

Several case series have described the clinical features of SARS-CoV-2 infection in children from the perspective of disease severity, presenting symptoms, and in comparison to those described in adults. A consistent picture of a generally mild disease in children has emerged from settings in Asia, North America, and Europe. More than 96% of children reported to the equivalent of the Chinese CDC with laboratory confirmed SARS-CoV-2 infections had mild or moderate illness (fever, respiratory symptoms, or radiographic pneumonia without hypoxemia). Less than 3% had severe disease requiring oxygen supplementation and < 1% (3 children) were considered to be critically ill [29]. In several case series, most children were identified based on symptoms, making rates of infection in asymptomatic children unknown. Among 17,877 children who had symptoms reported to the U.S. CDC, the most common symptoms were fever (46%), cough (37%), headache (15%), diarrhea (14%), and sore throat (13%) in children ≤ 9 years and headache (42%), cough (41%), fever (35%), myalgia (30%), sore throat (29%), shortness of breath (16%), and diarrhea (14%) in children 10 – 19 years
of age. Other less commonly reported symptoms included rhinorrhea, nausea/vomiting, abdominal pain, and anosmia and dysgeusia [4]. Among a cohort of 50 hospitalized children (≤ 21 years of age) in New York City, the median time from symptom onset to hospitalization was 2 days with a median length of hospitalization of 3 days. Forty (80%) had fever and 32 (64%) respiratory symptoms with infants less likely to have respiratory symptoms compared with older children. Sixteen (8%) had a viral co-detection and 20 (40%) had a presumptive or confirmed bacterial co-infection. Sixteen (32%) required respiratory support and 9 (16%) required assisted ventilation [30]. A cohort of 65 children receiving care in a New York City area health system demonstrated similar demographics with 35% of patients requiring intensive-care-unit care. Severity was lowest in infants < 60 days of age and highest in chronically ill children; 79% of immunocompromised children had mild disease. One death was reported [28]. In comparison, a multinational systematic review of clinical information from 1780 children noted fever (52%), cough (47%), sore throat (18%) and severe illness in 0.6% [26].

As the pandemic progressed, the ability of SARS-CoV-2 infection to result in a broad spectrum of pathological conditions with varying clinical manifestations has become apparent. In April 2020 several European countries noted increasing numbers of children with systemic inflammation and clinical features resembling both Kawasaki Disease and toxic shock syndrome. Simultaneously, reports from the U.S. began to describe the clinical characteristics, treatment, and outcomes of previously healthy SARS-CoV-2-infected children and adolescents with inflammation in multiple systems [31]. Initially termed the Pediatric Multi-System Inflammatory Syndrome Potentially Associated with COVID-19 [32], the CDC developed a case definition for what is now referred to as Multisystem Inflammatory Syndrome in Children (MIS-C) in North America. Publicized in a health alert disseminated in the U.S., https://emergency.cdc.gov/han/2020/han00432.asp, the clinical and laboratory parameters of children who meet the criteria for MIS-C differ from those with Kawasaki Disease. Children with MIS-C are usually older, have more symptoms consistent with clinical
shock, have involvement of their gastrointestinal and cardiovascular systems, and have lymphopenia with notably elevated inflammatory markers. Coronary artery aneurysms have been noted both in children < 5 years old who were more likely to have presentations similar to those seen with Kawasaki Disease, as well as in older children [33, 34]. One of the first case series to be described in the U.S consisted of 6 critically ill children with fever, diarrhea, shock, with variable skin lesions, conjunctivitis, extremity edema, and mucous membrane changes [33]. A more recently studied cohort of 186 children presenting with MIS-C had a mean age of 8.3 years; the majority (73%) were previously healthy and 130 (70%) had laboratory evidence of a SARS-CoV-2 infection via PCR and/or serum antibody testing. In the U.S. cohort, gastrointestinal (92%), cardiovascular (80%), hematologic (76%) mucocutaneous (74%) and respiratory (70%) symptoms were reported; 80% required intensive care with 4 deaths [35]. A cohort of children identified in New York had similar findings, with an increase in MIS-C cases noted 1 month following a peak of SARS-CoV-2 infections in the state [34]. A case series from a single center in London described 4 (15%) children with MIS-C who had new neurological symptoms involving both the central and peripheral nervous systems with splenial changes on imaging, in the absence of respiratory symptoms. Complete neurological recovery was noted in two of the children with ongoing monitoring of the improving neurological status of the other two children. Three of the 4 children received intravenous immunoglobulin (IVIG); two of whom also received biologics [36]. Guillain-Barré Syndrome has been associated with COVID-19 in two case reports. The first occurred three weeks following a mild febrile and respiratory SARS-CoV-2 infection in an 11-year-old male [37] and a second was coincident with a SARS-CoV-2 presentation in a 15-year old male [38]. Neurotropism of the SARS-CoV-2 virus may explain these manifestations with a temporal relationship to COVID-19 infections in children.

Unusual symptoms have been recognized as likely related to COVID-19. Children and young adults have presented with painful purple and red papules on their fingers and toes, similar to pernio, which has been termed “COVID toes”, as their only manifestation of COVID-19.
Anosmia with or without dysgeusia has recently been incorporated into the list of symptoms associated with COVID-19 [40] but both are less commonly reported in children [28], possibly due to lack of appreciation, lack of reporting, or true absence. Several children’s hospitals in the U.S. have collaboratively developed a registry for the standardized collection of clinical and epidemiologic information from children with COVID-19. This centralized source of information will help to characterize many aspects of COVID-19 disease manifestations in children (https://www.pids.org/news/764-usa-pediatric-covid-19-registry.html).

Laboratory and Radiographic Findings

Early reports from China noted leukopenia (19%), lymphopenia (31%), transaminitis (6%), elevated myocardial enzymes (31%) and elevated C-reactive protein (CRP) (3%) among children with SARS-CoV-2 infections [41]. Cytokine abnormalities have been described in children with severe manifestations of COVID-19, including elevated levels of interleukin (IL)-6, IL-10, and Interferon-gamma (IFN-γ) [42]. A European systematic review of 655 children with mild to moderate clinical manifestations of COVID-19 noted lymphopenia or neutropenia in 13% and elevated inflammatory markers in 31% [26]. Among two cohorts of hospitalized children < 21 years of age in the New York City area with laboratory confirmed SARS-CoV-2 detected via PCR, between 44 to 72% had lymphopenia and inflammatory marker abnormalities; coagulopathy was correlated with a more severe disease presentation [30] [28].

The most common imaging abnormalities noted among Chinese children with both symptomatic and asymptomatic COVID-19 were pulmonary ground glass opacities or consolidation [43]. In a case series of 171 children from whom SARS-CoV-2 was detected, 56 (33%) had ground-glass opacities, 32 (19%) had local patchy shadowing, 21 (12%) had bilateral patchy shadowing, and 2 (1%) had interstitial abnormalities [44]. Another series found that bilateral infiltrates were more common than unilateral infiltrates; 4 (20%) children
had normal initial chest computerized tomography (CT) imaging [45]. Although children with more severe manifestations of disease were more likely to have imaging abnormalities [41], this association may be due to ascertainment bias, as children with severe manifestations may be more likely to undergo imaging. Additionally, imaging abnormalities have been described in children with minimal to no recognized symptoms.

Outcomes
Most children with severe manifestations of COVID-19 completely recover. Accounting for access to diagnostic testing, children with underlying conditions appear to be most at risk for adverse outcomes. The spectrum of outcomes is described among 48 children cared for in pediatric intensive care units (PICU) in North America, 40 (83%) had an underlying medical condition. Although 18 (38%) of these children required mechanical ventilation and one patient required extracorporeal membrane oxygenation, the overall mortality was 4% among this North American PICU cohort [27]. In a case series from New York City, obesity and asthma were prevalent in the cohort but not significantly associated with PICU admission [46]. Prolonged courses of critical care have been reported in China for children with acute lymphocytic leukemia, hydronephrosis, and intussusception [42, 44, 47, 48].

These generally favorable outcomes among children who experience clinically significant COVID-19 is an area of active exploration. Hypotheses that may explain the decreased severity of disease in children compared with adults include the lower expression of the angiotensin converting enzyme 2 (ACE 2) viral entry receptor in the lungs and nasal epithelia of children compared to adults [49, 50], differences in innate immune responses that control viral killing and expression of inflammatory regulators involved in the ARDS pathway [51, 52], cross protection from non-novel coronaviruses, exposure to vaccines with immunomodulating properties [53], and the lower prevalence of underlying chronic medical conditions compared to adults and the elderly with COVID-19 [54].
SPECIAL POPULATIONS

Pregnant women: While developing an understanding of the impact of SARS-CoV-2 on pregnant women and their neonates, professional societies including the American College of Obstetricians and Gynecologists and the Society for Maternal-Fetal Medicine have issued joint guidance [55] and registries have been developed to track outcomes of infected pregnant women and their infants (https://priority.ucsf.edu/). The American Academy of Pediatrics (AAP) issued guidance for the care of newborns born to women with suspected or confirmed COVID-19 [56].

Routine testing for SARS-CoV-2 in women in a high prevalence city in the U.S., at the time of delivery of their infants, showed that one in eight women from whom SARS-CoV-2 was detected at the time of delivery, were asymptomatic [57]. Initial reports did not suggest a higher mortality or increased rates of complications among pregnant women from whom SARS-CoV-2 was detected [58] [59, 60]. Subsequently, ongoing CDC surveillance has noted that pregnant women in the U.S. with SARS-CoV-2 infections were more likely to be hospitalized than non-pregnant women for non-obstetric indications. Adjusting for cofounders, pregnant women were more likely to be cared for in an intensive care unit and to receive mechanical ventilation than non-pregnant women of childbearing age. Among 81% of 11,312 pregnant women with SARS-CoV-2 detection for whom information was available, 50% were of Hispanic or Latino ethnicity, 23% were White race and non-Hispanic ethnicity, 20% were Black race and non-Hispanic [61]. A high rate of acute respiratory distress syndrome was observed among a cohort of 64 pregnant women with severe or critical COVID-19 in the U.S. Half of the women were delivered during their third trimester; most of the infants born to the critically and severely ill women were premature. However, there were no maternal nor perinatal deaths in this cohort [62].

Evidence for vertical transmission of SARS-CoV-2 has been sought from maternal-neonatal pairs. A case series of 33 SARS-CoV-2 infected mothers identified 3 (9%) neonates in whom
SARS-CoV-2 was detected from nasopharyngeal and stool specimens on days of life 2 and 4 and who had symptoms of early-onset sepsis with initial fever and pneumonia. Rapid clinical improvement and lack of persistent viral detection made the significance of vertical transmission unclear [63].

Probable congenital infection has been reported in an infant born via Caesarean section with SARS-CoV-2 detected via PCR from neonatal nasopharyngeal swabs on day of life 0, 2, and 7, from blood on day of life 4 and from stool from day of life 7; umbilical cord tissue was negative for SARS-CoV-2. The neonate had an uneventful postnatal course and was reportedly well at a day of life 30 follow up assessment [64]. From a case series of women diagnosed with COVID-19, their third trimester placentas were more likely to show at least one feature of maternal vascular malperfusion, although rates of acute and chronic inflammation were not increased compared to the placentas of women without COVID-19 [65].

One can speculate that the endovascular effects of SARS-CoV-2 infection result in placental thrombosis and insufficiency, affecting the fetus, even in the absence of transplacental infection.

Neonates: Preliminary analyses have suggested that *in utero* vertical transmission is possible from SARS-CoV-2 positive pregnant women. SARS-CoV-2 has been detected in placentae, umbilical cord blood, vaginal mucosa of pregnant women and in expressed human milk [66]. Other researchers have provided evidence supporting probable congenital transmission from women without active infection at the time of delivery [64]. Guidance regarding the management of the infant born to a woman with known or suspected COVID-19 or asymptomatic detection of SARS-CoV-2 virus has undergone evolution. The initial suggestion of mother-infant separation was subject to debate, with the AAP [67], the U.S. CDC [68], and the WHO [69] all suggesting different approaches. Recent revisions by the AAP, based on accumulated data and experience, have harmonized guidance [56]. Between
2-5% of over 1500 infants registered in the Perinatal COVID-19 Registry tested positive in the 24-96 hours following birth [56]. Noting that the risk for neonatal acquisition of SARS-CoV-2 appears to be equivalent when rooming-in with maternal adherence to infection prevention guidance, versus physical separation of women and their neonates, post-partum women may be offered the choice of rooming-in. Infants requiring hospitalization before 1 month of age have been found to have symptoms consistent with COVID-19 and SARS-CoV-2 has been detected in their nasopharyngeal specimens. The relationship between maternal and caregiver exposure and neonatal acquisition of infection is an area of ongoing investigation.

Although SARS-CoV-2 nucleic acid has been detected in expressed human milk, the viability of virus and the presence and role of antibodies to SARS-CoV-2 is currently unknown. To date, SARS-CoV-2 transmission has not been documented via human milk ingestion, therefore expressed human milk or direct breastfeeding is supported for women with COVID-19. Hand and breast hygiene along with maternal masking is also recommended to decrease opportunities for transmission of SARS-CoV-2 from mother to neonate.

The AAP continues to recommend diagnostic testing of all asymptomatic newborns at 24 and, if still hospitalized, at 48 hours of age [67] [56]. While the results of universal testing of asymptomatic neonates may have utility for in-hospital isolation and for understanding the epidemiology of COVID-19 in this low risk population, the implications of test results for post-hospital pediatric care should be considered. Additional guidance from the AAP regarding hospital visitation and discharge of neonates born to mothers with COVID-19 may be found at https://services.aap.org/en/pages/2019-novel-coronavirus-covid-19-infections/clinical-guidance/

Immunocompromised: Our current understanding of the risk for SARS-CoV-2 acquisition and subsequent COVID-19 in immunocompromised children reflect limited epidemiologic data. Assumptions about the elevated risk for infection and adverse outcomes in
immunocompromised children is based on extrapolation from experience with other respiratory viruses [70]. The duration of viral shedding may be prolonged in those receiving immunosuppressive therapies.

Considerations relevant to the care of children with cancer [71], those who have undergone hematopoietic cell transplant (HCT) [72, 73], or solid organ transplants (SOT) [74] are emerging but are mostly adult focused. Accumulating evidence suggests that mild to moderate immunosuppression may not be a risk factor for more severe manifestations of COVID-19 in children [28] [75] [76].

Given the current pandemic, a high level of clinical suspicion for COVID-19 in immunocompromised children is needed. Societies dedicated to the care of immunocompromised persons recommend that children with fever or respiratory symptoms (cough, shortness of breath, hypoxemia) be considered for SARS-CoV-2 PCR testing. If children have respiratory symptoms, multiplex respiratory panels should also be considered. An immunocompromised child with symptoms consistent with COVID-19 with a negative SARS-CoV-2 PCR may be considered for repeat testing if clinical suspicion for COVID-19 remains high, given variability in screening test sensitivity and specificity. Lastly, children positive for SARS-CoV-2 with lower respiratory symptoms should be considered for chest imaging if the result of the imaging study will impact their management. Given the heterogeneity of the immunocompromised pediatric population and the rapidly evolving nature of the COVID-19 pandemic, a list of organizations and their associated COVID-19 websites is provided as reference for the most updated information regarding management (Table 1).

DIAGNOSTICS

Diagnosis of acute SARS-CoV-2 infection is a rapidly evolving field. Most assays utilize specific real-time RT PCR techniques [77, 78]. Numerous PCR assays approved only under the Food and Drug Administration (FDA) Emergency Use Authorization (EUA) have been
extensively used in children [18, 29, 63, 79]. Although the nucleocapsid gene has been the primary target, some assays have included other viral target sequences [73, 78]. Molecular testing is the optimal diagnostic test for detection of SARS-CoV-2 in a person suspected of having an acute COVID-19.

For diagnostic testing for SARS-CoV-2, CDC recommends collecting and testing an upper respiratory specimen, preferably a nasopharyngeal specimen [80]. The diagnostic utility of saliva specimens, antigen testing, and self-collected nasal specimens are being assessed in adults and will need to be validated in children. Non-respiratory sites, including stool, have been evaluated in infants and children using research-based assays to detect SARS-CoV-2 RNA, but FDA EUA approved commercially available assays are currently not available for stool specimens. To conform to EUA guidance, users should note the anatomical sites for which an approved SARS-CoV-2 assay is validated.

Antibody assays that detect IgM and IgG may be reactive as early as 4 days after symptom onset [54], until as late as 11-14 days from date of infection [81], impacting the utility of serology as a diagnostic modality. Serological assays approved under the FDA EUA [82] have largely used adult specimens for validation and raise the question about applicability in children, especially with respect to cross-reactivity to the non-novel coronaviruses [83]. Serologic assays may be helpful to describe the epidemiology of SARS-CoV-2 retrospectively, but population samples will be a key factor in interpreting the results.

Although detection of another respiratory virus does not eliminate the possibility of SARS-CoV-2 co-infection, at the beginning of the pandemic, many public health entities suggested that detection of a non-SARS-CoV-2 respiratory organism was enough evidence to exclude a COVID-19. In part, this triage system was based upon limited access to acute diagnostic capability at the time, which also coincided with an end to the respiratory viral season. Among 161 hospitalized children (≤14 years of age) with positive respiratory virus PCR assays enrolled in a retrospective study, two (1%) were coinfected with human respiratory
viruses and *Mycoplasma pneumoniae* in China. These organisms were detected in the bronchoalveolar lavage fluids from both patients [84]. Another case series from China suggested that 17 (50%) children had nasopharyngeal co-detection of SARS-CoV-2 with other respiratory viruses [85]. Understanding coinfection and codetection of organisms with SARS-CoV-2 in children is one of ongoing interest. Particularly as the pandemic extends into the winter viral season in the northern hemisphere, consideration of other respiratory viruses may inform management decisions.

Consideration of the sensitivity, specificity, positive and negative predictive values of diagnostic assays is essential. Despite low limits of detection of viral RNA in most commercially available PCR assays, false negative and discordant results have been noted [86]. As with any assay, timing of collection with respect to the illness course, intermittent shedding, variability of sample collection, degradation of viral RNA during shipping or storage of samples, the specimen acquisition site, and host and epidemiological factors must be considered in the interpretation of diagnostic test results.

TREATMENT AND PREVENTION

Management of children with acute SARS-CoV-2 infection and post-infectious sequelae such as MIS-C is rapidly evolving, with guidance available from CDC [87], WHO [88] the National Institutes of Health (NIH) [89], and the Infectious Diseases Society of America (IDSA) [90]. The Pediatric Infectious Diseases Society (PIDS) developed guidance that focuses on the rationale and indications for the use of antivirals with known or suspected COVID-19 in children [91]. Supportive care remains the mainstay of management for most children. A summary of relevant candidate therapies is provided in Table 2. Additional investigational COVID-19 therapeutics with ongoing or upcoming planned human trials can be found on ClinicalTrials.gov (https://clinicaltrials.gov/ct2/results?cond=COVID-19). Following the finding that the antiviral remdesivir was superior to placebo in shortening the time to recovery and reducing mortality in adults hospitalized with lower respiratory tract
involvement from a COVID-19 [92], a Phase 2/3 single-arm, open-label study to evaluate the safety, tolerability, pharmacokinetics, and efficacy of remdesivir (GS-5734™) in children from birth to < 18 years of age with COVID-19 was initiated (NCT04431453) and is ongoing. An evaluation of the management of children using immunomodulatory therapies such as IVIG, corticosteroids, IL-6 and IL-1Ra inhibitors is ongoing for children with inflammatory (MIS-C) or severe presentations [35]

There is currently no medical evidence to support the use of chemoprophylaxis for SARS-CoV-2 infections in children. A recent randomized controlled trial showed no efficacy in the prevention of COVID-19 in adults taking hydroxychloroquine for COVID-19 post-exposure prophylaxis [93]. There is one ongoing trial for prevention of thromboembolism in children with COVID-19 (NCT04354155). It is not clear whether the burden of disease warrants trials of monoclonal antibody prophylaxis in immunocompromised children who may not respond adequately to a vaccine.

There are currently no licensed vaccines available to prevent COVID-19. Over 140 vaccine candidates targeted at COVID-19 prevention are in development, with many in ongoing clinical trials. Utilizing models including adjuvanted and non-adjuvanted protein-based, DNA-based, inactivated viral, and mRNA-based, viral-like particles, and viral vector-based vaccine designs, select candidates with promising phase 1 and 2 results are being evaluated in phase 3 trials. Most vaccine trials currently exclude the enrollment of children in initial stages, however plans are in place to extend trials of promising vaccine candidates to pregnant women and children.

INFECTION PREVENTION AND CONTROL

SARS-CoV-2 is spread by respiratory droplets or close contact [94] facilitating transmission in grouped care arrangements. Person-to-person transmission as well as healthcare-associated transmissions have been described [95]. The extent of transmission by aerosols remains controversial. The virus is not believed to be spread by food. Emerging data
supporting lack of infectivity with prolonged shedding after 9 to 10 days has helped to guide isolation and quarantine guidance within healthcare settings and in the community [96] [97].

As with all infectious diseases, the principles of Identify, Isolate and Inform may be applied to the management of children with known or suspected COVID-19. The unique aspects related to care of children with known or suspected COVID-19 center on maintaining a balance between family-centered care and healthcare worker safety (Table 3).

As the epidemiology of SARS-CoV-2 and COVID-19 unfolds, the mild and varied spectra of illness in most children makes identification challenging. Unique to children is the important consideration of parental presence during care. To prevent transmission in facilities, screening, triage and isolation strategies, implemented at all points of entry, should involve accompanying family members. A high level of clinical suspicion, well-equipped triage stations, routine objective and subjective screening, and signage in public areas promoting masking with child-sized masks with child-accessible hand hygiene efforts are recommended [98]. Environmental controls, including child-friendly floor markings to encourage social distancing, partitioning, and physical distancing, are recommended. Several unique aspects for care of children during an infectious disease pandemic are reviewed in Table 3.

PREPAREDNESS AND COMMUNITY IMPACT

As part of the preparedness response, many pediatric healthcare entities have provided resources to adult healthcare systems, given the greater clinical impact of COVID-19 among adults. While the burden of clinical disease has been notably less in children, the psychosocial impact has been profound. Accustomed to socialization and interaction, children separated from their peer group have experienced the adverse effects of physical and social distancing manifest as depression, anxiety, and loss of developmental milestones. An estimated 188 countries imposed countrywide school closures affecting more than 1.5 billion children [99]. While a systematic review estimated that school closures may
contribute a 2 to 4% reduction in COVID-19 associated deaths [100], emerging evidence supports the hypothesis that children are not the primary propagators of infection [101] [102] and that reopening schools provides an essential service to children and their communities [103]. The timing and extent of school reopening is a multidisciplinary decision that should consider local epidemiology and resources, while engaging Pediatric Infectious Disease clinicians. The CDC [104] and AAP [105] have developed guidance to assist policymakers with strategies to safely open schools by optimizing infection prevention, surveillance, and developing inclusion and exclusion approaches in collaboration with local public health authorities.

In addition to disruption of their peer groups, some children may have one, both, or all caregivers debilitated by illness, resulting in interruption of delivery of care. In many instances, preventive care, including immunization delivery, has been delayed [106].

Non-hospital institutional systems that house or provide care to children and adolescents may be adversely impacted by ill residents or staff. Many ambulatory group and chronic care facilities for children have been unable to continue operations due to their inability to comply with requirements related to social distancing in the provision of care [107], resulting in discontinuation of essential services. Transmission of SARS-CoV-2 in an overnight summer camp setting resulted in high attack rates among persons in all age groups. Asymptomatic infection potentially contributed to undetected transmission; assessment of clinical impact is ongoing. Use of face coverings and other preventive strategies were not universal [108]. This report also questions the utility of pre-attendance, asymptomatic SARS-CoV-2 PCR testing, collected up to 12 days in advance of participation in a congregate activity.

CONCLUSIONS AND OPPORTUNITIES:
As we learn more about the impact of SARS-CoV-2 on children, the adults who care for them, and the impact of management and containment strategies, questions related to the
management of children during a pandemic have emerged (Table 4). While we gain a
greater understanding of the clinical impact and epidemiology of SARS-CoV-2, we must
continue to advocate for the inclusion of children in clinical research, treatment, and
prevention trials. Pediatric infectious disease clinicians and researchers are uniquely poised
to partner with pediatricians, health departments, and policymakers to develop guidance that
incorporates the unique needs of children and the communities in which they reside.
FUNDING

No funding was provided for completion of this work

CONFLICTS OF INTEREST

Potential conflicts of interest:

J.A. is a Medical consultant, MOREHealth and Consultant, AlloVir
C.K.C has a research grant funded by Gilead Sciences and has been a consultant for Sanofi
C.M.E has received research funding from Gilead Sciences
K.K. has received support from the National Institutes of Health and the Bill and Melinda Gates Foundation
V.R. receives current salary support from the NIH Vaccine and Treatment Evaluation Units and the National Emerging Special Pathogens Training and Education Center and previously received support from National Institute of Allergy and Infectious Diseases training grant T32AI074492. VR also receives support from Pfizer for efforts related to COVID-19 clinical trials
A.L.S. has received salary support from the Centers for Disease Control and Prevention
L.S. receives grant support from Merck, Inc., the Cystic Fibrosis Foundation, the Bill and Melinda Gates Foundation, and the NIH. L.S. has served on an expert advisory panel for Merck and for AstraZeneca
REFERENCES

Table 1: Resources for lay and medical caregivers on COVID-19 from organizations and societies involved in the care of immunocompromised pediatric patients

<table>
<thead>
<tr>
<th>Organization or Society</th>
<th>Resources (guidelines, newsletters, educational materials)</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Association of Blood Banks (AABB)</td>
<td>http://www.aabb.org/advocacy/regulatorygovernment/Pages/AABB-Coronavirus-Resources.aspx</td>
</tr>
<tr>
<td>American Society of Hematology (ASH)</td>
<td>https://hematology.org/covid-19</td>
</tr>
<tr>
<td>American Society of Pediatric Hematology/Oncology (ASPHO)</td>
<td>http://aspho.org/covid-19-resources-for-pediatric-hematologists-oncologists</td>
</tr>
<tr>
<td>American Society of Transplantation (AST)</td>
<td>https://nam03.safelinks.protection.outlook.com/?url=htps%3A%2F%2Fwww.myast.org%2Fcovid-19-information&data=02%7C01%7Cashane%40emory.edu%7C880396cd6b8f4b17cada08d83ac09447%7Ce004fb9cb0a4424fbcd0322606d5df38%7C0%7C0%7C637323946089322541&amp;data=pr1Ka0SWeWpRS%2FJfL4oherv0LRSMKwRxXSfzl5ReMU%3D&amp;reserved=0</td>
</tr>
<tr>
<td>American Society for Transplantation and Cellular Therapy (ASTCT)</td>
<td>https://www.astct.org/communities/public-home?CommunityKey=d3949d84-3440-45f4-8142-90ea05adb0e5</td>
</tr>
<tr>
<td>Center for International Blood & Marrow Transplant Research (CIBMTR)</td>
<td>https://www.cibmtr.org/Covid19/Pages/default.aspx</td>
</tr>
<tr>
<td>Organization</td>
<td>Website</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Children’s Oncology Group (COG)</td>
<td>https://childrensoncologygroup.org/</td>
</tr>
<tr>
<td>Emerging Infections Task Force (EITaF), European Society of Clinical Microbiology and Infectious Diseases (ESCMID)</td>
<td>https://www.escmid.org/research_projects/emerging_infections_task_force/eitafoutbreak_news/</td>
</tr>
<tr>
<td>European Society for Blood and Marrow Transplantation (EBMT)</td>
<td>https://www.ebmt.org/covid-19-and-bmt</td>
</tr>
<tr>
<td>European Society for Organ Transplantation (ESOT)</td>
<td>https://nam03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.esot.org%2Forganisation%2Fcovid-19-response&data=02%7C01%7Cashane%40emory.edu%7C880396cd6b8f4b17cada08d83ac09447%7Ce004fb9ecb0a4424fbc0d322606d5d38%7C0%7C0%7C637323946089322541&amp;sdata=NRvfWrjvbwQGhsq7rZPeRtmXhilSUpelPz4isHgCepf%3D&amp;reserved=0</td>
</tr>
<tr>
<td>Federation for the Accreditation of Cellular Therapy (FACT)</td>
<td>http://www.factwebsite.org/News.aspx#news-id2014</td>
</tr>
<tr>
<td>Human Immunodeficiency Virus Medicine Association (HIVMA)</td>
<td>Directs to IDSA COVID-19 Resource Center</td>
</tr>
<tr>
<td>Immunodeficiency Foundation (IDF)</td>
<td>https://primaryimmune.org/coronavirus</td>
</tr>
<tr>
<td>Infectious Diseases Society of America (IDSA)</td>
<td>https://www.id society.org/public-health/COVID-19-Resource-Center/</td>
</tr>
<tr>
<td>International Pediatric Transplant Association (IPTA)</td>
<td>Directs to TTS and TID COVID-19 websites</td>
</tr>
<tr>
<td>International Society for Heart and</td>
<td>https://ishlt.org/covid-19-information</td>
</tr>
<tr>
<td>Organization</td>
<td>Website</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>National Cancer Institute (NCI)</td>
<td>https://www.cancer.gov/contact/emergency-preparedness/coronavirus</td>
</tr>
<tr>
<td>National Comprehensive Cancer Network (NCCN)</td>
<td>https://www.nccn.org/covid-19/</td>
</tr>
<tr>
<td>Organ Procurement and Transplant Network (OPTN)</td>
<td>https://optn.transplant.hrsa.gov/governance/policy-notices/</td>
</tr>
<tr>
<td>Pediatric Infectious Diseases Society (PIDS)</td>
<td>http://www.pids.org/resources/covid-19.html</td>
</tr>
<tr>
<td>Pediatric Transplantation and Cellular Therapy Consortium (PTCTC)</td>
<td>None</td>
</tr>
<tr>
<td>United Network for Organ Sharing (UNOS)</td>
<td>https://unos.org/covid/</td>
</tr>
<tr>
<td>World Marrow Donor Association</td>
<td>https://share.wmda.info/display/LP/COVID-19+-</td>
</tr>
</tbody>
</table>
On-line search performed on 13 April 2020 using search terms “coronavirus,” “COVID-19,” and “SARS-CoV-2.” Updated 5 August 2020
Table 2: Status of therapeutic options and ongoing clinical trials on specific antiviral agents for treatment against COVID-19

<table>
<thead>
<tr>
<th>Therapeutic</th>
<th>Possible mechanism of action</th>
<th>Evidence for anti-coronavirus activity</th>
<th>Evidence for anti-SARS-CoV-2 activity</th>
<th>Additional considerations</th>
<th>Current status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remdesivir</td>
<td>Prodrug of an adenosine analog leading to impairment of viral replication via delayed chain termination [109]</td>
<td>In vitro, remdesivir demonstrate inhibitory activity against multiple human coronavirus strains [110][111][112][113]</td>
<td>Inhibition of viral replication demonstrated in vitro [115]</td>
<td>Limited data on pediatric use from Ebola treatment trials and individual case reports of pediatric use [116][117]</td>
<td>Recent U.S. Food and Drug Administration (FDA) Emergency Use Authorization (EUA) for hospitalized adult and pediatric patients requiring oxygen, mechanical ventilation,</td>
</tr>
<tr>
<td>pathology</td>
<td>lung</td>
<td>decreased</td>
<td>viral loads, pulmonary decreased</td>
<td>decreased scores, disease decreased</td>
<td>decreased clinical disease</td>
</tr>
<tr>
<td>Corticosteroids</td>
<td>Generalized anti-inflammatory activity</td>
<td>Widely used among critically ill patients with SARS and MERS</td>
<td>Rates of ARDS, shock and need for respiratory support were higher in patients on steroids but steroids were only used for those with more severe illness: unclear if there was benefit [118]</td>
<td>Limited pediatric data</td>
<td>Currently available for use for multiple conditions</td>
</tr>
<tr>
<td>Convalenc</td>
<td>Human convalescent plasma is available from people who have recovered and can</td>
<td>In a randomized trial of 103 patients, convalescent plasma did not provide</td>
<td>Available for children via a national expanded access protocol</td>
<td>Multiple trials in progress</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>t plasma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Chloroquine/ Hydroxychloroquine +/- azithromycin | Altered glycosylation of the ACE2 receptor [115, 121]; decreased viral entry due to impaired acidification of endosome [121, 122]; modulation of the host | In vitro, chloroquine inhibits viral replication of multiple coronavirus strains, although the effect may be lost if the drug is added several hours post-infection [121] [123-] | A large observational study showed neither overall benefit nor harm [129] | The FDA warns against use in unmonitored settings, due to the potential for arrhythmias, especially with QT prolonging medications | Currently available for use in treating malaria and rheumatologic disorders. Currently recommended to be administered only as part of a clinical

| donate high titer neutralizing immunoglobulin-containing plasma | statistically significant improvement. Trial ended early and may have been underpowered [120] |
| immune response | 126] Hydroxychloroquine inhibits SARS-CoV and MERS-CoV *in vitro* [127, 128] | trial due to lack of efficacy against SARS-CoV-2 in studies to date [130] |

COVID-19, coronavirus disease 2019; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; hCoV OC43, human coronavirus OC43; MERS-CoV, Middle East respiratory syndrome coronavirus; CYP3A4, cytochrome P450 3A4; RSV, respiratory syncytial virus; SARS, severe acute respiratory syndrome; MERS, Middle East respiratory syndrome; ARDS, acute respiratory distress syndrome.
Table 3: Unique Aspects of Pediatric Infection Prevention and Management for Children Known or Suspected to Have COVID-19

<table>
<thead>
<tr>
<th>AMBULATORY</th>
<th>INPATIENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDENTIFY</td>
<td></td>
</tr>
<tr>
<td>Pre-screen for symptoms prior to visit to assist with triage upon arrival</td>
<td>Limit family members to essential caregivers</td>
</tr>
<tr>
<td>Limit family members present</td>
<td>Screen accompanying family members daily for symptoms and fever</td>
</tr>
<tr>
<td>Screen accompanying family members as well as patient</td>
<td>Universal masking</td>
</tr>
<tr>
<td>Mask symptomatic, if not subject to universal masking</td>
<td>Emphasize hand hygiene</td>
</tr>
<tr>
<td>Emphasize hand hygiene</td>
<td></td>
</tr>
<tr>
<td>ISOLATE</td>
<td></td>
</tr>
<tr>
<td>Isolate family in examination room with patient</td>
<td>Isolation based on symptom and diagnostic test result (if done) considering patient and essential parent</td>
</tr>
<tr>
<td>Limit activities in clinic to essential services</td>
<td>Limit to asymptomatic essential caregiver(s), unless end of life care</td>
</tr>
<tr>
<td>Limit aerosol generating procedures to those that are essential for care</td>
<td>Healthcare workers to wear personal protective equipment (PPE) including a fit-tested N95 respirator for aerosol-generating procedures</td>
</tr>
<tr>
<td>Healthcare workers to wear personal protective equipment (PPE) including a fit-tested N95 respirator for aerosol-generating procedures</td>
<td>Parents and patients > 2 years of age to wear face coverings</td>
</tr>
<tr>
<td>Parents and patients > 2 years of age to wear face coverings</td>
<td>Asymptomatic caregiver may remove PPE in child’s room but should replace with entrance of healthcare personnel</td>
</tr>
<tr>
<td></td>
<td>Cancel congregate events and close or strictly limit access to family lounges</td>
</tr>
<tr>
<td>INFORM</td>
<td>Query diagnostic testing status of patient and accompanying family members to assist with triage</td>
</tr>
<tr>
<td>Place isolation status indicator on door of examination room</td>
<td>Place isolation status indicator on door of patient’s room</td>
</tr>
<tr>
<td>Have PPE available exterior to room</td>
<td>Have PPE available exterior to room</td>
</tr>
</tbody>
</table>

MANAGE	Label and decorate PPE if decorations do not interfere with function	Utilize remote programing for:
		- Music and art therapy
		- Behavioral therapy
		- Hospital school programing
		- Child life therapy and instruction
		- Pet therapy
	Label and decorate PPE if decorations for not interfere with function	

* PPE = personal protective equipment
<table>
<thead>
<tr>
<th>Category</th>
<th>Question / Topic</th>
<th>Population</th>
<th>Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epidemiology</td>
<td>Immunologic basis of relative sparing of younger children</td>
<td>Children of all ages</td>
<td>Collect serological data pre- and post-COVID-19; Compare immunologic biomarkers in COVID-19 hospitalized, mildly asymptomatic, and asymptomatic children</td>
</tr>
<tr>
<td>Diagnostics</td>
<td>Understand the variable detection of viral nucleic acid from nasopharyngeal, oropharyngeal, nasal, and stool specimens in children</td>
<td>Children of all ages</td>
<td>Colonization studies of various sites correlated with clinical presentation and symptoms</td>
</tr>
<tr>
<td>Clinical manifestations</td>
<td>Understand the varying infectious and post-infectious clinical manifestations associated with infection, including Multi-System Inflammatory Syndrome in Children (MIS-C)</td>
<td>Children of all ages; comparison with adults</td>
<td>Analyze registries assembled compiling descriptive and epidemiologic data</td>
</tr>
<tr>
<td>Treatment</td>
<td>Engagement of children with their unique Older adolescents</td>
<td>Older adolescents</td>
<td>Enroll and engage older adolescents in early phase</td>
</tr>
<tr>
<td>Pathophysiology and treatment and vaccine trials from the development stage</td>
<td>with progression to younger age groups</td>
<td>Trials</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Infection Prevention</td>
<td>Role of asymptomatic or mildly symptomatic children in COVID-19 propagation in the population</td>
<td>Children of all ages</td>
<td>Household and community transmission studies; design vaccine trials with consideration of herd protection</td>
</tr>
<tr>
<td>Preparedness and Impact</td>
<td>Understand the impact of social isolation and abrupt economic changes on physical and social development, food security, and behavioral health</td>
<td>Children of all ages</td>
<td>Compare cohorts of different ages and from different communities</td>
</tr>
<tr>
<td>Distributed public health messaging, optimize engagement, and subsidize systems to optimize uptake of routine pediatric vaccines and monitor for disease outbreaks</td>
<td>Children all ages</td>
<td>Engage pediatric infectious disease clinicians with public health professionals in the assessment of immunization uptake. Collaborate with clinicians to develop safe and effective outreach strategies to immunize children during the stages of pandemic response. Engage the media in</td>
<td></td>
</tr>
<tr>
<td>propagating productive messaging</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>