Hypermetabolism and Coronavirus Disease 2019

P. Yu
Zucker School of Medicine at Hofstra/Northwell

H. Cassiere
Zucker School of Medicine at Hofstra/Northwell

S. DeRosa

K. Bocchieri

S. Yar

See next page for additional authors

Follow this and additional works at: https://academicworks.medicine.hofstra.edu/publications

Part of the Cardiology Commons

Recommended Citation

This Article is brought to you for free and open access by Donald and Barbara Zucker School of Medicine Academic Works. It has been accepted for inclusion in Journal Articles by an authorized administrator of Donald and Barbara Zucker School of Medicine Academic Works. For more information, please contact academicworks@hofstra.edu.
Hypermetabolism and COVID-19

Pey-Jen Yu, M.D.¹, Hugh Cassiere, M.D.¹, Sarah DeRosa, RD, CDN, CNSC¹, Karl Bocchieri, MBA, C.C.P.¹, Shiraz Yar, RT¹, Alan Hartman, M.D.¹

¹Division of Cardiovascular and Thoracic Surgery, North Shore University Hospital, Northwell Health, 300 Community Drive, 1DSU, Manhasset, NY 11030

Financial disclosure(s): None declared

Conflicts of interest: None declared

Corresponding author:

Pey-Jen Yu, MD
Division of Cardiovascular and Thoracic Surgery
North Shore University Hospital
Northwell Health
300 Community Drive
Manhasset, NY 11030

Phone: +1 (516) 562-4970, Fax: +1 (516) 562-3786

Email: pyu2@northwell.edu

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/jpen.1948.
This article is protected by copyright. All rights reserved.
Abstract

Background: Hypermetabolism has been described in stress states such as trauma, sepsis, ARDS, and severe burn injuries. We hypothesize that patients with COVID-19 may develop a hypermetabolic state which may be a major contributing factor to the extraordinary ventilatory and oxygenation demands in patients with COVID-19.

Method: Resting energy expenditure (REE), carbon dioxide production (VCO2) and oxygen consumption (VO2) were measured by indirect calorimetry on seven critically ill patients with COVID-19.

Results: The median measured REE was 4044 Kcal/day which was 235.7% ± 51.7% of predicted. The median VCO2 was 452 mL/min (range 295-582 mL/min) and the median VO2 was 585 mL/min (range 416-798 mL/min).

Conclusion: Critically ill patients with COVID-19 are in an extreme hypermetabolic state. This may explain the high failure rates for mechanical ventilation for these patients and highlights the potential need for increased nutritional requirements for such patients. <PE-FRONTEND>
Clinical Relevancy Statement

We describe our findings that critically ill patients with COVID-19 are in an extreme hypermetabolic state with extraordinary oxygen consumption and carbon dioxide production. This may explain the high failure rates for mechanical ventilation for patients with severe COVID-19, may help direct nutritional requirements for such patients, and may also suggest targets for therapeutic interventions which have not been explored to date.

Introduction

Many patients with Coronavirus disease 2019 (COVID-19) remain hypoxic and hypercarbic despite being on maximal ventilator settings. A dissociation between the degree of lung injury and the severity of hypoxia and hypercapnia has been observed in patients with COVID-19.¹ This suggests that the severity of acute respiratory failure of patients with COVID-19 may not be solely attributable to pulmonary compromise. As Acute Respiratory Distress Syndrome (ARDS) is associated with production of pro-inflammatory cytokines and induction of a hypermetabolic state,² we hypothesize that patients with COVID-19 may develop a hypermetabolic state which may be a major contributing factor to the extraordinary ventilatory and oxygenation demands in patients with COVID-19.

Methods and Results

This retrospective case series included seven adults with confirmed COVID-19 requiring mechanical ventilation with continued hypercapnia and/or hypoxia. Resting energy expenditure (REE) was predicted using the Penn State equation and measured using CCM Express indirect calorimeter (MGC Diagnostics, Saint Paul, MN). All patients were on FiO₂
≤ 60% and did not require renal replacement therapy and/or thoracostomy tubes to ensure the accuracy of the indirect calorimetry measurements.

All patients were on intravenous sedation infusions. Median age was 62 years (range 55-74 years), 5 (71.4%) patients were male, median length of intubation was 19 days (range 3-39 days). Median pCO2 and pO2 were 60 mmHg (range 53-72mmHg) and 75 mmHg (range 61-95mmHg), respectively. Indirect calorimetry results are shown in Table 1. The median measured REE was 4044 Kcal/day which was 235.7% ± 51.7% of predicted. The median VCO2 was 452 mL/min (range 295-582 mL/min) and the median VO2 was 585 mL/min (range 416-798 mL/min). Levels of inflammatory markers are shown in Table 2. There were no strong positive correlation between C-reactive protein and D-Dimer to both measured REE and measured REE/predicted REE (Pearson correlation coefficient < 0.5).

Discussion

This case series demonstrates the significant metabolic demands of critically ill patients with COVID-19. Hypermetabolism has been described in stress states such as trauma, sepsis, ARDS, and severe burn injuries. However, the measured resting energy expenditure seen in our case series of patients with COVID-19 far exceeds that described for other disease states. The profoundly increased oxygen consumption and carbon dioxide production seen in our patient cohort as a result of their hypermetabolism may help explain the high failure rates for mechanical ventilation for patients with severe COVID-19. Some of these patients may be considered for extracorporeal membrane oxygenator support (ECMO), however, the oxygen consumption and carbon dioxide production in all seven patients in our
cohort would have exceeded the O$_2$ and CO$_2$ transfer capacity of typical adult oxygenators used in ECMO circuits.

These observations may suggest the need for increased feeding beyond the 15-20 kcal/kg actual body weight/day that is currently recommend for critically ill patients with COVID-19.4 While patients with ARDS have energy expenditures that is approximately 30% above REE2, we found most patients with COVID-19 have energy expenditures of greater than 200% of REE. Adequate nutritional support is vital for preservation of respiratory muscle function, promotion of immune response to infection and mitigation of oxidative cellular injury.5 However, given the extraordinarily high REE seen in patients with COVID-19, purely using REE measurements as targeted goal for nutritional calories in these patients may result in overfeeding and increased CO2 production.6 We are currently involved in studies looking at the ideal target calories relative to the REE measured from indirect calorimetry in critically ill patients with COVID-19.

In additional to having implications for the management of nutritional support in patients with COVID-19, our observations of extreme hypermetabolism in critically ill patients with COVID-19 suggest possible targets for therapeutic interventions which have not been explored to date. We are currently embarking on interventional studies aiming to decrease the metabolic demand of patients with COVID-19 and reconfiguring ECMO circuits to meet the increased need for gas exchange.
References

TABLE 1: Indirect Calorimetry Results

<table>
<thead>
<tr>
<th>Patient #</th>
<th>Age</th>
<th>Body Mass Index</th>
<th>Measured REE (Kcal/day)</th>
<th>Predicted REE (Kcal/day)</th>
<th>VCO2 (mL/min)</th>
<th>VO2 (mL/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>62</td>
<td>26.6</td>
<td>5186</td>
<td>1733</td>
<td>582</td>
<td>750</td>
</tr>
<tr>
<td>2</td>
<td>74</td>
<td>24.6</td>
<td>2845</td>
<td>1296</td>
<td>303</td>
<td>416</td>
</tr>
<tr>
<td>3</td>
<td>70</td>
<td>37.5</td>
<td>3052</td>
<td>1865</td>
<td>295</td>
<td>455</td>
</tr>
<tr>
<td>4</td>
<td>57</td>
<td>28.1</td>
<td>4044</td>
<td>2108</td>
<td>452</td>
<td>585</td>
</tr>
<tr>
<td>5</td>
<td>57</td>
<td>27.4</td>
<td>3952</td>
<td>1955</td>
<td>468</td>
<td>565</td>
</tr>
<tr>
<td>6</td>
<td>69</td>
<td>25.1</td>
<td>4282</td>
<td>1617</td>
<td>401</td>
<td>642</td>
</tr>
<tr>
<td>7</td>
<td>55</td>
<td>25.2</td>
<td>5414</td>
<td>1753</td>
<td>555</td>
<td>798</td>
</tr>
</tbody>
</table>

REE = Resting Energy Expenditure
Table 2: Inflammatory Markers

<table>
<thead>
<tr>
<th>Patient #</th>
<th>Hospital Day (#)</th>
<th>Measured REE (Kcal/day)</th>
<th>Measured REE/Predicted REE (% Predicted)</th>
<th>C-Reactive Protein (mg/dL)</th>
<th>D-Dimer (ng/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
<td>5186</td>
<td>299</td>
<td>7.11</td>
<td>13862</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>2845</td>
<td>219</td>
<td>0.5</td>
<td>2894</td>
</tr>
<tr>
<td>3</td>
<td>22</td>
<td>3052</td>
<td>164</td>
<td>13.36</td>
<td>1160</td>
</tr>
<tr>
<td>4</td>
<td>23</td>
<td>4044</td>
<td>192</td>
<td>3.94</td>
<td>980</td>
</tr>
<tr>
<td>5</td>
<td>30</td>
<td>3952</td>
<td>202</td>
<td>13.38</td>
<td>2019</td>
</tr>
<tr>
<td>6</td>
<td>32</td>
<td>4282</td>
<td>265</td>
<td>14.5</td>
<td>560</td>
</tr>
<tr>
<td>7</td>
<td>55</td>
<td>5414</td>
<td>309</td>
<td>12.6</td>
<td>1393</td>
</tr>
</tbody>
</table>

REE = Resting Energy Expenditure