Publication Date
2014
Journal Title
Am J Obstet Gynecol
Abstract
OBJECTIVE: Data from animal models show that in utero exposure to a maternal high-fat diet (HFD) renders susceptibility of these offspring to the adult onset of metabolic syndrome. We and others have previously shown that epigenetic modifications to histones may serve as a molecular memory of the in utero exposure, rendering the risk of adult disease. Because mice heterozygous for the Glut4 gene (insulin sensitive glucose transporter) born to wild-type (WT) mothers demonstrate exacterbated metabolic syndrome when exposed to an HFD in utero, we sought to analyze the genome-wide epigenetic changes that occur in the fetal liver in susceptible offspring. STUDY DESIGN: WT and Glut4(+/-) (G4(+/-)) offspring of WT mothers that were exposed either to a control or an HFD in utero were studied. Immunoblotting was used to measure hepatic histone modifications of fetal and 5-week animals. Chromatin immunoprecipitation (ChIP) followed by hybridization to chip arrays (ChIP-on-chip) was used to detect genome-wide changes of histone modifications with HFD exposure. RESULTS: We found that levels of hepatic H3K14ac and H3K9me3 significantly increased with HFD exposure in WT and G4(+/-) fetal and 5-week offspring. Pathway analysis of our ChIP-on-chip data revealed differential H3K14ac and H3K9me3 enrichment along pathways that regulate lipid metabolism, specifically in the promoter regions of Pparg, Ppara, Rxra, and Rora. CONCLUSION: We conclude that HFD exposure in utero is associated with functional alterations to fetal hepatic histone modifications in both WT and G4(+/-) offspring, some of which persist up to 5 weeks of age.
Volume Number
210
Issue Number
5
Pages
463 e1-463 e11
Document Type
Article
EPub Date
2014/05/06
Status
Faculty, Northwell Researcher
Facility
School of Medicine; Northwell Health
Primary Department
General Pediatrics
PMID
DOI
10.1016/j.ajog.2014.01.045