Publication Date
2018
Journal Title
J Neurosci
Abstract
© 2018 the authors. Evidence for intrinsic functional connectivity (FC) within the human brain is largely from neuroimaging studies of hemodynamic activity. Data are lacking from anatomically precise electrophysiological recordings in the most widely studied nodes of human brain networks. Here we used a combination of fMRI and electrocorticography (ECoG) in five human neurosurgical patients with electrodes in the canonical “default” (medial prefrontal and posteromedial cortex), “dorsal attention” (frontal eye fields and superior parietal lobule), and “frontoparietal control” (inferior parietal lobule and dorsolateral prefrontal cortex) networks. In this unique cohort, simultaneous intracranial recordings within these networks were anatomically matched across different individuals. Within each network and for each individual, we found a positive, and reproducible, spatial correlation for FC measures obtained from resting-state fMRI and separately recorded ECoG in the same brains. This relationship was reliably identified for electrophysiological FC based on slow (<1 >Hz) fluctuations of high-frequency broadband (70–170 Hz) power, both during wakeful rest and sleep. A similar FC organization was often recovered when using lower-frequency(1–70Hz)power,but anatomical specificity and consistency were greatest for the high-frequency broadband range. An interfrequency comparison of fluctuations in FC revealed that high and low-frequency ranges often temporally diverged from one another, suggesting that multiple neurophysiological sources may underlie variations in FC. Together, our work offers a generalizable electrophysiological basis for intrinsic FC and its dynamics across individuals, brain networks, and behavioral states.
Volume Number
38
Issue Number
17
Pages
4230 - 4242
Document Type
Article
Status
Faculty
Facility
School of Medicine
Primary Department
Neurology
Additional Departments
Neurosurgery
PMID
DOI
10.1523/JNEUROSCI.0217-18.2018