Publication Date

2018

Journal Title

J Neurosci

Abstract

© 2018 the authors. Evidence for intrinsic functional connectivity (FC) within the human brain is largely from neuroimaging studies of hemodynamic activity. Data are lacking from anatomically precise electrophysiological recordings in the most widely studied nodes of human brain networks. Here we used a combination of fMRI and electrocorticography (ECoG) in five human neurosurgical patients with electrodes in the canonical “default” (medial prefrontal and posteromedial cortex), “dorsal attention” (frontal eye fields and superior parietal lobule), and “frontoparietal control” (inferior parietal lobule and dorsolateral prefrontal cortex) networks. In this unique cohort, simultaneous intracranial recordings within these networks were anatomically matched across different individuals. Within each network and for each individual, we found a positive, and reproducible, spatial correlation for FC measures obtained from resting-state fMRI and separately recorded ECoG in the same brains. This relationship was reliably identified for electrophysiological FC based on slow (<1 >Hz) fluctuations of high-frequency broadband (70–170 Hz) power, both during wakeful rest and sleep. A similar FC organization was often recovered when using lower-frequency(1–70Hz)power,but anatomical specificity and consistency were greatest for the high-frequency broadband range. An interfrequency comparison of fluctuations in FC revealed that high and low-frequency ranges often temporally diverged from one another, suggesting that multiple neurophysiological sources may underlie variations in FC. Together, our work offers a generalizable electrophysiological basis for intrinsic FC and its dynamics across individuals, brain networks, and behavioral states.

Volume Number

38

Issue Number

17

Pages

4230 - 4242

Document Type

Article

Status

Faculty

Facility

School of Medicine

Primary Department

Neurology

Additional Departments

Neurosurgery

PMID

29626167

DOI

10.1523/JNEUROSCI.0217-18.2018


Included in

Neurology Commons

Share

COinS