Publication Date
2019
Journal Title
Cancers
Abstract
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. Anaplastic lymphoma kinase (ALK) translocation is an actionable mutation in lung adenocarcinoma. Nonetheless tumour consists of heterogeneous cell subpopulations with diverse phenotypes and genotypes, and cancer cells can actively release extracellular vesicles (EVs) to modulate the phenotype of other cells in the tumour microenvironment. We hypothesized that EVs derived from a drug-resistant subpopulation of cells could induce drug resistance in recipient cells. We have established ALK-translocated lung adenocarcinoma cell lines and subclones. The subclones have been characterized and the expression of EV-RNAs determined by quantitative polymerase chain reaction. The effects of EV transfer on drug resistance were examined in vitro. Serum EV-RNA was assayed serially in two patients prescribed ALK-tyrosine kinase inhibitor (ALK-TKI) treatment. We demonstrated that the EVs from an ALK-TKI-resistant subclone could induce drug resistance in the originally sensitive subclone. EV-RNA profiling revealed that miRNAs miR-21-5p and miR-486-3p, and lncRNAs MEG3 and XIST were differentially expressed in the EVs secreted by the resistant subclones. These circulating EV-RNA levels have been found to correlate with disease progression of EML4-ALK-translocated lung adenocarcinoma in patients prescribed ALK-TKI treatment. The results from this study suggest that EVs released by a drug-resistant subpopulation can induce drug resistance in other subpopulations and may sustain intratumoural heterogeneity.
Volume Number
11
Issue Number
1
Pages
E104
Document Type
Article
Status
Faculty
Facility
School of Medicine
Primary Department
Occupational Medicine, Epidemiology and Prevention
PMID
DOI
10.3390/cancers11010104
Included in
Clinical Epidemiology Commons, Community Health and Preventive Medicine Commons, Epidemiology Commons