Applications of temporal kernel canonical correlation analysis in adherence studies
Publication Date
2015
Journal Title
Stat Methods Med Res
Abstract
Adherence to medication is often measured as a continuous outcome but analyzed as a dichotomous outcome due to lack of appropriate tools. In this paper, we illustrate the use of the temporal kernel canonical correlation analysis (tkCCA) as a method to analyze adherence measurements and symptom levels on a continuous scale. The tkCCA is a novel method developed for studying the relationship between neural signals and hemodynamic response detected by functional MRI during spontaneous activity. Although the tkCCA is a powerful tool, it has not been utilized outside the application that it was originally developed for. In this paper, we simulate time series of symptoms and adherence levels for patients with a hypothetical brain disorder and show how the tkCCA can be used to understand the relationship between them. We also examine, via simulations, the behavior of the tkCCA under various missing value mechanisms and imputation methods. Finally, we apply the tkCCA to a real data example of psychotic symptoms and adherence levels obtained from a study based on subjects with a first episode of schizophrenia, schizophreniform or schizoaffective disorder.
Document Type
Article
EPub Date
2015/08/22
Status
Faculty, Northwell Researcher
Facility
School of Medicine; Northwell Health
Primary Department
Psychiatry
Additional Departments
Molecular Medicine
PMID
DOI
10.1177/0962280215598805