Publication Date
2015
Journal Title
J Ment Health
Abstract
BACKGROUND: A patient's physical activity is often used by psychiatrists to contribute to the diagnostic process for mental disorders. Typically, it is based mostly on self-reports or observations, and hardly ever upon actigraphy. Other signals related to physiology are rarely used, despite the fact that the autonomic nervous system is often affected by mental disorders. AIM: This study attempted to fuse physiological and physical activity data and discover features that are predictive for schizophrenia. METHOD: Continuous simultaneous heart rate (HR) and physical activity recordings were made on 16 individuals with schizophrenia and 19 healthy controls. Statistical characteristics of the recorded data were analyzed, as well as non-linear rest-activity measures and disorganization measures. RESULTS: Four most predictive features for schizophrenia were identified, namely, the standard deviation and mode of locomotor activity, dynamics of Multiscale Entropy change over scales of HR signal and the mean HR. A classifier trained on these features provided a cross-validation accuracy of 95.3% (AUC = 0.99) for differentiating between schizophrenia patients and controls, compared to 78.5 and 85.5% accuracy (AUC = 0.85 and AUC = 0.90) using only the HR or locomotor activity features. CONCLUSION: Physiological and physical activity signals provide complimentary information for assessment of mental health.
Volume Number
24
Issue Number
5
Pages
276-82
Document Type
Article
EPub Date
2015/07/21
Status
Faculty
Facility
School of Medicine
Primary Department
Psychiatry
Additional Departments
Molecular Medicine
PMID
DOI
10.3109/09638237.2015.1019048